Java充电社
专辑
博文
联系我
本人继续续收门徒,亲手指导
Java高并发教程
-> JUC中ReentrantLock
1、必须知道的几个概念
2、并发级别
3、有关并行的两个重要定律
4、JMM相关的一些概念
5、深入理解进程和线程
6、线程的基本操作
7、volatile与Java内存模型
8、线程组
9、用户线程和守护线程
10、线程安全和synchronized
11、中断线程的几种方式
12、JUC中ReentrantLock
13、JUC中的Condition
14、JUC中的LockSupport工具类
15、UC中的Semaphore(信号量)
16、JUC中的CountDownLatch
17、JUC中的循环栅栏CyclicBarrier
18、线程池
19、JUC中的Executor框架详解1
20、JUC中的Executor框架详解2
21、java中的CAS
22、java中的UnSafe类
23、JUC中的原子操作类
24、ThreadLocal、InheritableThreadLocal
25、JUC中的阻塞队列
26、JUC中一些常见的集合
27、实战:你的接口太慢了需要优化
28、实战:构建日志系统
29、实战:一起来搞懂限流
30、JUC中的CompletableFuture
31、等待线程完成的方式你知道几种?
32、原子操作增强类LongAdder、LongAccumulator
33、怎么演示公平锁和非公平锁
34、谷歌提供的一些好用的并发工具类
35、延迟队列 DelayQueue 详解
36、线程6种状态详解
37、如何实现一个通用的延迟队列?
上一篇:中断线程的几种方式
下一篇:JUC中的Condition
<div style="display:none"></div> 本篇文章开始将juc中常用的一些类,估计会有十来篇。 ## 目录 [TOC] ## synchronized的局限性 synchronized是java内置的关键字,它提供了一种独占的加锁方式。synchronized的获取和释放锁由jvm实现,用户不需要显示的释放锁,非常方便,然而synchronized也有一定的局限性,例如: 1. 当线程尝试获取锁的时候,如果获取不到锁会一直阻塞,这个阻塞的过程,用户无法控制 2. 如果获取锁的线程进入休眠或者阻塞,除非当前线程异常,否则其他线程尝试获取锁必须一直等待 JDK1.5之后发布,加入了Doug Lea实现的java.util.concurrent包。包内提供了Lock类,用来提供更多扩展的加锁功能。Lock弥补了synchronized的局限,提供了更加细粒度的加锁功能。 ## ReentrantLock ReentrantLock是Lock的默认实现,在聊ReentranLock之前,我们需要先弄清楚一些概念: 1. 可重入锁:可重入锁是指同一个线程可以多次获得同一把锁;ReentrantLock和关键字Synchronized都是可重入锁 2. 可中断锁:可中断锁时子线程在获取锁的过程中,是否可以相应线程中断操作。synchronized是不可中断的,ReentrantLock是可中断的 3. 公平锁和非公平锁:公平锁是指多个线程尝试获取同一把锁的时候,获取锁的顺序按照线程到达的先后顺序获取,而不是随机插队的方式获取。synchronized是非公平锁,而ReentrantLock是两种都可以实现,不过默认是非公平锁 ## ReentrantLock基本使用 我们使用3个线程来对一个共享变量++操作,先使用**synchronized**实现,然后使用**ReentrantLock**实现。 **synchronized方式**: ```java package com.itsoku.chat06; /** * 微信公众号:路人甲Java,专注于java技术分享(带你玩转 爬虫、分布式事务、异步消息服务、任务调度、分库分表、大数据等),喜欢请关注! */ public class Demo2 { private static int num = 0; private static synchronized void add() { num++; } public static class T extends Thread { @Override public void run() { for (int i = 0; i < 10000; i++) { Demo2.add(); } } } public static void main(String[] args) throws InterruptedException { T t1 = new T(); T t2 = new T(); T t3 = new T(); t1.start(); t2.start(); t3.start(); t1.join(); t2.join(); t3.join(); System.out.println(Demo2.num); } } ``` ReentrantLock方式: ```java package com.itsoku.chat06; import java.util.concurrent.locks.ReentrantLock; /** * 微信公众号:路人甲Java,专注于java技术分享(带你玩转 爬虫、分布式事务、异步消息服务、任务调度、分库分表、大数据等),喜欢请关注! */ public class Demo3 { private static int num = 0; private static ReentrantLock lock = new ReentrantLock(); private static void add() { lock.lock(); try { num++; } finally { lock.unlock(); } } public static class T extends Thread { @Override public void run() { for (int i = 0; i < 10000; i++) { Demo3.add(); } } } public static void main(String[] args) throws InterruptedException { T t1 = new T(); T t2 = new T(); T t3 = new T(); t1.start(); t2.start(); t3.start(); t1.join(); t2.join(); t3.join(); System.out.println(Demo3.num); } } ``` **ReentrantLock的使用过程:** 1. **创建锁:ReentrantLock lock = new ReentrantLock();** 2. **获取锁:lock.lock()** 3. **释放锁:lock.unlock();** 对比上面的代码,与关键字synchronized相比,ReentrantLock锁有明显的操作过程,开发人员必须手动的指定何时加锁,何时释放锁,正是因为这样手动控制,ReentrantLock对逻辑控制的灵活度要远远胜于关键字synchronized,上面代码需要注意**lock.unlock()**一定要放在finally中,否则,若程序出现了异常,锁没有释放,那么其他线程就再也没有机会获取这个锁了。 ## ReentrantLock是可重入锁 来验证一下ReentrantLock是可重入锁,实例代码: ```java package com.itsoku.chat06; import java.util.concurrent.locks.ReentrantLock; /** * 微信公众号:路人甲Java,专注于java技术分享(带你玩转 爬虫、分布式事务、异步消息服务、任务调度、分库分表、大数据等),喜欢请关注! */ public class Demo4 { private static int num = 0; private static ReentrantLock lock = new ReentrantLock(); private static void add() { lock.lock(); lock.lock(); try { num++; } finally { lock.unlock(); lock.unlock(); } } public static class T extends Thread { @Override public void run() { for (int i = 0; i < 10000; i++) { Demo4.add(); } } } public static void main(String[] args) throws InterruptedException { T t1 = new T(); T t2 = new T(); T t3 = new T(); t1.start(); t2.start(); t3.start(); t1.join(); t2.join(); t3.join(); System.out.println(Demo4.num); } } ``` 上面代码中add()方法中,当一个线程进入的时候,会执行2次获取锁的操作,运行程序可以正常结束,并输出和期望值一样的30000,假如ReentrantLock是不可重入的锁,那么同一个线程第2次获取锁的时候由于前面的锁还未释放而导致死锁,程序是无法正常结束的。ReentrantLock命名也挺好的Re entrant Lock,和其名字一样,可重入锁。 代码中还有几点需要注意: 1. **lock()方法和unlock()方法需要成对出现,锁了几次,也要释放几次,否则后面的线程无法获取锁了;可以将add中的unlock删除一个事实,上面代码运行将无法结束** 2. **unlock()方法放在finally中执行,保证不管程序是否有异常,锁必定会释放** ## ReentrantLock实现公平锁 在大多数情况下,锁的申请都是非公平的,也就是说,线程1首先请求锁A,接着线程2也请求了锁A。那么当锁A可用时,是线程1可获得锁还是线程2可获得锁呢?这是不一定的,系统只是会从这个锁的等待队列中随机挑选一个,因此不能保证其公平性。这就好比买票不排队,大家都围在售票窗口前,售票员忙的焦头烂额,也顾及不上谁先谁后,随便找个人出票就完事了,最终导致的结果是,有些人可能一直买不到票。而公平锁,则不是这样,它会按照到达的先后顺序获得资源。公平锁的一大特点是:它不会产生饥饿现象,只要你排队,最终还是可以等到资源的;synchronized关键字默认是有jvm内部实现控制的,是非公平锁。而ReentrantLock运行开发者自己设置锁的公平性。 看一下jdk中ReentrantLock的源码,2个构造方法: ```java public ReentrantLock() { sync = new NonfairSync(); } public ReentrantLock(boolean fair) { sync = fair ? new FairSync() : new NonfairSync(); } ``` 默认构造方法创建的是非公平锁。 第2个构造方法,有个fair参数,当fair为true的时候创建的是公平锁,公平锁看起来很不错,不过要实现公平锁,系统内部肯定需要维护一个有序队列,因此公平锁的实现成本比较高,性能相对于非公平锁来说相对低一些。因此,在默认情况下,锁是非公平的,如果没有特别要求,则不建议使用公平锁。 公平锁和非公平锁在程序调度上是很不一样,来一个公平锁示例看一下: ```java package com.itsoku.chat06; import java.util.concurrent.locks.ReentrantLock; /** * 微信公众号:路人甲Java,专注于java技术分享(带你玩转 爬虫、分布式事务、异步消息服务、任务调度、分库分表、大数据等),喜欢请关注! */ public class Demo5 { private static int num = 0; private static ReentrantLock fairLock = new ReentrantLock(true); public static class T extends Thread { public T(String name) { super(name); } @Override public void run() { for (int i = 0; i < 5; i++) { fairLock.lock(); try { System.out.println(this.getName() + "获得锁!"); } finally { fairLock.unlock(); } } } } public static void main(String[] args) throws InterruptedException { T t1 = new T("t1"); T t2 = new T("t2"); T t3 = new T("t3"); t1.start(); t2.start(); t3.start(); t1.join(); t2.join(); t3.join(); } } ``` 运行结果输出: ```txt t1获得锁! t2获得锁! t3获得锁! t1获得锁! t2获得锁! t3获得锁! t1获得锁! t2获得锁! t3获得锁! t1获得锁! t2获得锁! t3获得锁! t1获得锁! t2获得锁! t3获得锁! ``` 看一下输出的结果,锁是按照先后顺序获得的。 修改一下上面代码,改为非公平锁试试,如下: ```java ReentrantLock fairLock = new ReentrantLock(false); ``` 运行结果如下: ```java t1获得锁! t3获得锁! t3获得锁! t3获得锁! t3获得锁! t1获得锁! t1获得锁! t1获得锁! t1获得锁! t2获得锁! t2获得锁! t2获得锁! t2获得锁! t2获得锁! t3获得锁! ``` 可以看到t3可能会连续获得锁,结果是比较随机的,不公平的。 ## ReentrantLock获取锁的过程是可中断的 对于synchronized关键字,如果一个线程在等待获取锁,最终只有2种结果: 1. 要么获取到锁然后继续后面的操作 2. 要么一直等待,直到其他线程释放锁为止 而ReentrantLock提供了另外一种可能,就是在等待获取锁的过程中(**发起获取锁请求到还未获取到锁这段时间内**)是可以被中断的,也就是说在等待锁的过程中,程序可以根据需要取消获取锁的请求。有些使用这个操作是非常有必要的。比如:你和好朋友越好一起去打球,如果你等了半小时朋友还没到,突然你接到一个电话,朋友由于突发状况,不能来了,那么你一定达到回府。中断操作正是提供了一套类似的机制,如果一个线程正在等待获取锁,那么它依然可以收到一个通知,被告知无需等待,可以停止工作了。 示例代码: ```java package com.itsoku.chat06; import java.util.concurrent.TimeUnit; import java.util.concurrent.locks.ReentrantLock; /** * 微信公众号:路人甲Java,专注于java技术分享(带你玩转 爬虫、分布式事务、异步消息服务、任务调度、分库分表、大数据等),喜欢请关注! */ public class Demo6 { private static ReentrantLock lock1 = new ReentrantLock(false); private static ReentrantLock lock2 = new ReentrantLock(false); public static class T extends Thread { int lock; public T(String name, int lock) { super(name); this.lock = lock; } @Override public void run() { try { if (this.lock == 1) { lock1.lockInterruptibly(); TimeUnit.SECONDS.sleep(1); lock2.lockInterruptibly(); } else { lock2.lockInterruptibly(); TimeUnit.SECONDS.sleep(1); lock1.lockInterruptibly(); } } catch (InterruptedException e) { System.out.println("中断标志:" + this.isInterrupted()); e.printStackTrace(); } finally { if (lock1.isHeldByCurrentThread()) { lock1.unlock(); } if (lock2.isHeldByCurrentThread()) { lock2.unlock(); } } } } public static void main(String[] args) throws InterruptedException { T t1 = new T("t1", 1); T t2 = new T("t2", 2); t1.start(); t2.start(); } } ``` 先运行一下上面代码,发现程序无法结束,使用jstack查看线程堆栈信息,发现2个线程死锁了。 ```java Found one Java-level deadlock: ============================= "t2": waiting for ownable synchronizer 0x0000000717380c20, (a java.util.concurrent.locks.ReentrantLock$NonfairSync), which is held by "t1" "t1": waiting for ownable synchronizer 0x0000000717380c50, (a java.util.concurrent.locks.ReentrantLock$NonfairSync), which is held by "t2" ``` lock1被线程t1占用,lock2被线程t2占用,线程t1在等待获取lock2,线程t2在等待获取lock1,都在相互等待获取对方持有的锁,最终产生了死锁,如果是在synchronized关键字情况下发生了死锁现象,程序是无法结束的。 我们对上面代码改造一下,线程t2一直无法获取到lock1,那么等待5秒之后,我们中断获取锁的操作。主要修改一下main方法,如下: ```java T t1 = new T("t1", 1); T t2 = new T("t2", 2); t1.start(); t2.start(); TimeUnit.SECONDS.sleep(5); t2.interrupt(); ``` 新增了2行代码`TimeUnit.SECONDS.sleep(5);t2.interrupt();`,程序可以结束了,运行结果: ```java java.lang.InterruptedException at java.util.concurrent.locks.AbstractQueuedSynchronizer.doAcquireInterruptibly(AbstractQueuedSynchronizer.java:898) at java.util.concurrent.locks.AbstractQueuedSynchronizer.acquireInterruptibly(AbstractQueuedSynchronizer.java:1222) at java.util.concurrent.locks.ReentrantLock.lockInterruptibly(ReentrantLock.java:335) at com.itsoku.chat06.Demo6$T.run(Demo6.java:31) 中断标志:false ``` 从上面信息中可以看出,代码的31行触发了异常,**中断标志输出:false** ![](https://itsoku.oss-cn-hangzhou.aliyuncs.com/itsoku/blog/article/12/ec24264d-651f-4eb6-aa60-bb98a3098f78.png) t2在31行一直获取不到lock1的锁,主线程中等待了5秒之后,t2线程调用了`interrupt()`方法,将线程的中断标志置为true,此时31行会触发`InterruptedException`异常,然后线程t2可以继续向下执行,释放了lock2的锁,然后线程t1可以正常获取锁,程序得以继续进行。线程发送中断信号触发InterruptedException异常之后,中断标志将被清空。 关于获取锁的过程中被中断,注意几点: 1. **ReentrankLock中必须使用实例方法`lockInterruptibly()`获取锁时,在线程调用interrupt()方法之后,才会引发`InterruptedException`异常** 2. **线程调用interrupt()之后,线程的中断标志会被置为true** 3. **触发InterruptedException异常之后,线程的中断标志会被清空,即置为false** 4. **所以当线程调用interrupt()引发InterruptedException异常,中断标志的变化是:false->true->false** ## ReentrantLock锁申请等待限时 申请锁等待限时是什么意思?一般情况下,获取锁的时间我们是不知道的,synchronized关键字获取锁的过程中,只能等待其他线程把锁释放之后才能够有机会获取到锁。所以获取锁的时间有长有短。如果获取锁的时间能够设置超时时间,那就非常好了。 ReentrantLock刚好提供了这样功能,给我们提供了获取锁限时等待的方法`tryLock()`,可以选择传入时间参数,表示等待指定的时间,无参则表示立即返回锁申请的结果:true表示获取锁成功,false表示获取锁失败。 ### tryLock无参方法 看一下源码中tryLock方法: ```java public boolean tryLock() ``` 返回boolean类型的值,此方法会立即返回,结果表示获取锁是否成功,示例: ``` package com.itsoku.chat06; import java.util.concurrent.TimeUnit; import java.util.concurrent.locks.ReentrantLock; /** * 微信公众号:路人甲Java,专注于java技术分享(带你玩转 爬虫、分布式事务、异步消息服务、任务调度、分库分表、大数据等),喜欢请关注! */ public class Demo8 { private static ReentrantLock lock1 = new ReentrantLock(false); public static class T extends Thread { public T(String name) { super(name); } @Override public void run() { try { System.out.println(System.currentTimeMillis() + ":" + this.getName() + "开始获取锁!"); //尝试获取锁,不论是否成功,立即返回,不会阻塞 if (lock1.tryLock()) { System.out.println(System.currentTimeMillis() + ":" + this.getName() + "获取到了锁!"); //获取到锁之后,休眠5秒 TimeUnit.SECONDS.sleep(5); } else { System.out.println(System.currentTimeMillis() + ":" + this.getName() + "未能获取到锁!"); } } catch (InterruptedException e) { e.printStackTrace(); } finally { if (lock1.isHeldByCurrentThread()) { lock1.unlock(); } } } } public static void main(String[] args) throws InterruptedException { T t1 = new T("t1"); T t2 = new T("t2"); t1.start(); t2.start(); } } ``` 代码中获取锁成功之后,休眠5秒,会导致另外一个线程获取锁失败,运行代码,输出: ```java 1563356291081:t2开始获取锁! 1563356291081:t2获取到了锁! 1563356291081:t1开始获取锁! 1563356291081:t1未能获取到锁! ``` 可以看到t2获取成功,t1获取失败了,tryLock()是立即响应的,中间不会有阻塞。 ### tryLock有参方法 可以明确设置获取锁的超时时间,该方法签名: ```java public boolean tryLock(long timeout, TimeUnit unit) throws InterruptedException ``` 该方法在指定的时间内不管是否可以获取锁,都会返回结果,返回true,表示获取锁成功,返回false表示获取失败。此方法有2个参数,第一个参数是时间类型,是一个枚举,可以表示时、分、秒、毫秒等待,使用比较方便,第1个参数表示在时间类型上的时间长短。此方法在执行的过程中,如果调用了线程的中断interrupt()方法,会触发InterruptedException异常。 示例: ```java package com.itsoku.chat06; import java.util.concurrent.TimeUnit; import java.util.concurrent.locks.ReentrantLock; /** * 微信公众号:路人甲Java,专注于java技术分享(带你玩转 爬虫、分布式事务、异步消息服务、任务调度、分库分表、大数据等),喜欢请关注! */ public class Demo7 { private static ReentrantLock lock1 = new ReentrantLock(false); public static class T extends Thread { public T(String name) { super(name); } @Override public void run() { try { System.out.println(System.currentTimeMillis() + ":" + this.getName() + "开始获取锁!"); //获取锁超时时间设置为3秒,3秒内是否能否获取锁都会返回 if (lock1.tryLock(3, TimeUnit.SECONDS)) { System.out.println(System.currentTimeMillis() + ":" + this.getName() + "获取到了锁!"); //获取到锁之后,休眠5秒 TimeUnit.SECONDS.sleep(5); } else { System.out.println(System.currentTimeMillis() + ":" + this.getName() + "未能获取到锁!"); } } catch (InterruptedException e) { e.printStackTrace(); } finally { if (lock1.isHeldByCurrentThread()) { lock1.unlock(); } } } } public static void main(String[] args) throws InterruptedException { T t1 = new T("t1"); T t2 = new T("t2"); t1.start(); t2.start(); } } ``` 程序中调用了ReentrantLock的实例方法`tryLock(3, TimeUnit.SECONDS)`,表示获取锁的超时时间是3秒,3秒后不管是否能否获取锁,该方法都会有返回值,获取到锁之后,内部休眠了5秒,会导致另外一个线程获取锁失败。 运行程序,输出: ```java 1563355512901:t2开始获取锁! 1563355512901:t1开始获取锁! 1563355512902:t2获取到了锁! 1563355515904:t1未能获取到锁! ``` 输出结果中分析,t2获取到锁了,然后休眠了5秒,t1获取锁失败,t1打印了2条信息,时间相差3秒左右。 **关于tryLock()方法和tryLock(long timeout, TimeUnit unit)方法,说明一下:** 1. 都会返回boolean值,结果表示获取锁是否成功 2. tryLock()方法,不管是否获取成功,都会立即返回;而有参的tryLock方法会尝试在指定的时间内去获取锁,中间会阻塞的现象,在指定的时间之后会不管是否能够获取锁都会返回结果 3. tryLock()方法不会响应线程的中断方法;而有参的tryLock方法会响应线程的中断方法,而触发`InterruptedException`异常,这个从2个方法的声明上可以可以看出来 ## ReentrantLock其他常用的方法 1. isHeldByCurrentThread:实例方法,判断当前线程是否持有ReentrantLock的锁,上面代码中有使用过。 ## 获取锁的4种方法对比 | 获取锁的方法 | 是否立即响应(不会阻塞) | 是否响应中断 | | ------------------------------------ | ---------------------- | ------------ | | lock() | × | × | | lockInterruptibly() | × | √ | | tryLock() | √ | × | | tryLock(long timeout, TimeUnit unit) | × | √ | ## 总结 1. ReentrantLock可以实现公平锁和非公平锁 2. ReentrantLock默认实现的是非公平锁 3. ReentrantLock的获取锁和释放锁必须成对出现,锁了几次,也要释放几次 4. 释放锁的操作必须放在finally中执行 5. lockInterruptibly()实例方法可以相应线程的中断方法,调用线程的interrupt()方法时,lockInterruptibly()方法会触发`InterruptedException`异常 6. 关于`InterruptedException`异常说一下,看到方法声明上带有 ` throws InterruptedException `,表示该方法可以相应线程中断,调用线程的interrupt()方法时,这些方法会触发`InterruptedException`异常,触发InterruptedException时,线程的中断中断状态会被清除。所以如果程序由于调用`interrupt()`方法而触发`InterruptedException`异常,线程的标志由默认的false变为ture,然后又变为false 7. 实例方法tryLock()会尝试获取锁,会立即返回,返回值表示是否获取成功 8. 实例方法tryLock(long timeout, TimeUnit unit)会在指定的时间内尝试获取锁,指定的时间内是否能够获取锁,都会返回,返回值表示是否获取锁成功,该方法会响应线程的中断 <a style="display:none" target="_blank" href="https://mp.weixin.qq.com/s/_S1DD2JADnXvpexxaBwLLg" style="color:red; font-size:20px; font-weight:bold">继续收门徒,亲手带,月薪 4W 以下的可以来找我</a> ## 最新资料 1. <a href="https://mp.weixin.qq.com/s?__biz=MzkzOTI3Nzc0Mg==&mid=2247484964&idx=2&sn=c81bce2f26015ee0f9632ddc6c67df03&scene=21#wechat_redirect" target="_blank">尚硅谷 Java 学科全套教程(总 207.77GB)</a> 2. <a href="https://mp.weixin.qq.com/s?__biz=MzkwOTAyMTY2NA==&mid=2247484192&idx=1&sn=505f2faaa4cc911f553850667749bcbb&scene=21#wechat_redirect" target="_blank">2021 最新版 Java 微服务学习线路图 + 视频</a> 3. <a href="https://mp.weixin.qq.com/s?__biz=MzkwOTAyMTY2NA==&mid=2247484573&idx=1&sn=7f3d83892186c16c57bc0b99f03f1ffd&scene=21#wechat_redirect" target="_blank">阿里技术大佬整理的《Spring 学习笔记.pdf》</a> 4. <a href="https://mp.weixin.qq.com/s?__biz=MzkwOTAyMTY2NA==&mid=2247484544&idx=2&sn=c1dfe907cfaa5b9ae8e66fc247ccbe84&scene=21#wechat_redirect" target="_blank">阿里大佬的《MySQL 学习笔记高清.pdf》</a> 5. <a href="https://mp.weixin.qq.com/s?__biz=MzkwOTAyMTY2NA==&mid=2247485167&idx=1&sn=48d75c8e93e748235a3547f34921dfb7&scene=21#wechat_redirect" target="_blank">2021 版 java 高并发常见面试题汇总.pdf</a> 6. <a href="https://mp.weixin.qq.com/s?__biz=MzkwOTAyMTY2NA==&mid=2247485664&idx=1&sn=435f9f515a8f881642820d7790ad20ce&scene=21#wechat_redirect" target="_blank">Idea 快捷键大全.pdf</a> ![](https://itsoku.oss-cn-hangzhou.aliyuncs.com/itsoku/blog/article/1/2883e86e-3eff-404a-8943-0066e5e2b454.png)
#custom-toc-container